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Despite their simple auditory systems, some insect species
recognize certain temporal aspects of acoustic stimuli with an
acuity equal to that of vertebrates; however, the underlying
neural mechanisms and coding schemes are only partially un-
derstood. In this study, we analyze the response characteristics
of the peripheral auditory system of grasshoppers with special
emphasis on the representation of species-specific communi-
cation signals. We use both natural calling songs and artificial
random stimuli designed to focus on two low-order statistical
properties of the songs: their typical time scales and the distri-
bution of their modulation amplitudes.

Based on stimulus reconstruction techniques and quantified
within an information-theoretic framework, our data show that
artificial stimuli with typical time scales of .40 msec can be
read from single spike trains with high accuracy. Faster stimulus
variations can be reconstructed only for behaviorally relevant
amplitude distributions. The highest rates of information trans-

mission (180 bits/sec) and the highest coding efficiencies (40%)
are obtained for stimuli that capture both the time scales and
amplitude distributions of natural songs.

Use of multiple spike trains significantly improves the recon-
struction of stimuli that vary on time scales ,40 msec or feature
amplitude distributions as occur when several grasshopper
songs overlap. Signal-to-noise ratios obtained from the recon-
structions of natural songs do not exceed those obtained from
artificial stimuli with the same low-order statistical properties.
We conclude that auditory receptor neurons are optimized to
extract both the time scales and the amplitude distribution of
natural songs. They are not optimized, however, to extract
higher-order statistical properties of the song-specific rhythmic
patterns.
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Evolutionary processes have shaped acoustic communication be-
haviors of remarkable complexity (Hauser, 1996; Bradbury and
Vehrenkamp, 1998). These behaviors are made possible by so-
phisticated neural systems in both sender and receiver. In human
beings, for example, highly specialized cortical areas process
auditory stimuli, extract language information, and generate fine-
tuned motor signals required for proper speech production (Lev-
elt, 1993; Ehret and Romand, 1997).

Auditory systems of insects have a much simpler architecture,
and with up to a few hundred neurons, they are orders of mag-
nitude smaller than those of most vertebrates. Nevertheless, these
systems are capable of astounding computations. Some grasshop-
pers, for instance, detect gaps in conspecific songs as short as 1–2
msec (von Helversen, 1972), a performance level similar to that
reached by birds and mammals.

These observations trigger the general question of how a small
insect auditory system could possibly be organized to process
acoustic signals reliably and with high temporal precision. Impor-
tant clues will come from understanding the auditory periphery.
Do receptor neurons encode a large range of acoustic stimuli or

are they specifically tuned to behaviorally relevant features, such
as the temporal structure of a grasshopper calling song? Is the
information carried by the spike train of a single auditory recep-
tor sufficient to identify a given stimulus, or are several neurons
required to do so?

To analyze these questions, we focus on acridid grasshoppers of
the insect order Orthoptera. Their calling, courtship, and rivalry
songs are based on broad-band carrier signals with amplitudes
that are strongly modulated in time. Although lacking tonal
elements, the songs possess an elaborate temporal structure,
rhythmically arranged into distinct syllables separated by short
pauses.

On the receiver side, such songs are encoded by roughly 100
auditory receptors into discrete trains of action potentials. The
receptor cells are located within the two tympana on both sides of
the animal; their axons extend through the tympanal nerves to
the metathoracic ganglion, where auditory information is pro-
cessed by local interneurons and then sent to the brain via
ascending neurons.

The characteristics of their songs and the simplicity of their
auditory system make grasshoppers an ideal candidate for ad-
dressing questions of auditory signal processing. Already early on,
system-identification methods (Marmarelis and Marmarelis,
1978) were applied to this system in an effort to understand the
(nonlinear) encoding of sound within a firing-rate picture (Sippel
and Breckow, 1983).

Modern stimulus reconstruction methods (Bialek et al., 1991;
Rieke et al., 1997) allow us to advance these approaches and study
single-trial responses instead of sample averages. Specifically, we
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use both natural calling songs and artificial stimuli that are de-
signed to vary the most salient features of the songs, and we
quantify our experimental findings within an information-
theoretic framework.

This study is thus part of a larger ongoing enterprise to analyze
and compare the tuning properties of auditory systems under
naturalistic stimulation and extends previous studies in cats (At-
tias and Schreiner, 1998), birds (Theunissen et al., 2000), and
frogs (Rieke et al., 1995) to insects. Our results support the view
(Suga, 1989) that despite the large evolutionary distance between
various auditory systems, important aspects of their information-
processing strategies follow common design principles.

MATERIALS AND METHODS
Stimulus design
Acridid grasshoppers generate chirping sound patterns by rasping their
hindlegs across their forewings. The songs are characterized by a broad-
band carrier signal with frequencies in the range of 5–40 kHz and
amplitudes that are modulated in a species- and task-specific temporal
pattern (Elsner, 1974; Meyer and Elsner, 1996). This amplitude-
modulation signal (AM signal) is used for song recognition (von Helv-
ersen and von Helversen, 1997). Accordingly, artificial stimuli were
designed to capture the most salient statistical properties of the AM
signals: their typical time scales and their amplitude distributions.

Time scales of natural AM signals. As representative examples of
grasshopper stimuli, calling songs of Chorthippus biguttulus males re-
corded at 30°C were used, as kindly provided by D. and O. von Helversen
(University of Erlangen, Germany). Each phrase of these songs lasts for
2–4 sec and consists of many repetitions of a basic pattern, termed
“syllable,” separated by short pauses (von Helversen and von Helversen,
1997), as illustrated in Figure 1, A and B. Depending on the individual
animal and the ambient temperature, each combination of syllable and
pause spans between 60 and 140 msec. Loss or injury of a hindleg or
forewing results in short yet pronounced gaps within a syllable (see Fig.
1C). Gaps in a male song model as short as 1–2 msec reduce the
frequency of a behavioral response on the part of the female almost
down to zero (von Helversen, 1972; von Helversen and von Helversen,
1997). The time scales relevant to auditory recognition thus span three
orders of magnitude, from 1 msec to several seconds.

The overall rhythmic structure of a song is evident in the power
spectral density of the AM signal (see Fig. 1B, C, right panels). Gaps
within a syllable result in more prominent higher-frequency spectral
components (Fig. 1C, arrow).

Distribution of natural AM signals. To restrict attention to carrier
frequencies that match the sensitivity range of low-frequency receptors,
the calling songs of Ch. biguttulus males were first low-pass-filtered,
keeping only frequencies below 10 kHz. An estimate of the AM signal
was then calculated by taking the Hilbert transform (Haykin, 1994) of the
song waveform. A typical AM signal, corresponding to three syllables of
the calling song in Figure 1A, is shown on the lef t of Figure 1B.

The distribution of modulation amplitudes was calculated by choosing
a 1-sec-long segment of the example song in Figure 1A for which mean
and variance of the AM signal computed over 40 msec windows vary
least. The measured amplitude distribution displays a double-peak struc-
ture with one peak at low amplitudes for the pauses between distinct
syllables and one peak at higher amplitudes for the syllable segments (see
Fig. 1B, center). The distribution is, therefore, highly non-Gaussian. Note
that the low-amplitude peak is centered away from zero because the
pauses do not consist of silence but of relative quiet.

Amplitude modulations will be quantified by their modulation depth,
defined as the range covered by the central 95% of the amplitude
distribution. For the natural song shown in Figure 1B, this definition
implies a modulation depth of 24 dB.

Artificial stimuli with large modulation depth. The double-peak distri-
bution of modulation amplitudes is a signature of all grasshopper species.
One set of artificial stimuli was designed to capture this characteristic
feature. To investigate the importance of spectral properties of the AM
signal, one subtype of stimulus was chosen to exhibit the power spectral
density prescribed by the natural song shown in Figure 1B. Having both
the large modulation depth (LMD) of a grasshopper song and a song-like
spectrum (SLS), this artificial stimulus (Fig. 1D) comes closest to the
properties of the natural song.

The remaining stimuli contain a uniform or “white” mix of all modu-
lation frequencies, from zero up to a cut-off frequency of either 25, 50,
100, 200, 400, or 800 Hz (Fig. 1E). According to the Nyquist criterion
(Press et al., 1992), these AM signals require sampling frequencies
fsampling ranging from 50 to 1600 Hz, i.e., sampling intervals from 20 down
to 0.625 msec.

All LMD stimuli were created in two steps. In a first step, Fourier
components with the specified spectral amplitudes but random phases were
chosen, thereby generating Gaussian random-amplitude modulations.

In a second step, these Gaussian AM signals were used to generate AM
signals that have the same amplitude distribution as a typical calling song
of a male Ch. biguttulus, while maintaining the desired spectral charac-
teristics of the AM signal. To do so, the measured amplitude values of a
calling song were sorted into increasing order; the same number of
random, Gaussian variables was also sorted. Finally, the Gaussian set of
AM values was mapped in a one-to-one fashion onto the set derived from
the calling song. Without corrective measures, this procedure could
generate nontrivial higher-order correlations among the phases and
distort the spectrum (Li and Hammond, 1975); our correction scheme
involved an iterative procedure, alternately shaping the spectrum and
then mapping the cumulative distribution of the artificial variables onto
that of the target distribution shown in the center of Figure 1, B, D, and
E. In the investigated cases, however, the distortion of the spectrum was
negligible, so that the simple one-to-one mapping nonlinearity sufficed
for the transformation. This also allowed us to use the reverse transfor-
mation back into Gaussian stimuli for the purpose of calculating
information-theoretic quantities.

By construction, these artificial stimuli have the same broad distribu-
tion of modulation amplitudes as the male grasshopper song of Figure 1,
A and B. However, they are stationary, random AM signals and therefore
lack the regular syllable structure of natural songs (see Fig. 1B).

Artificial stimuli with small modulation depth. Artificial stimuli of an-
other, second set mimic a situation where pauses and gaps of individual
songs are blurred by other sounds as might occur when many grasshop-
pers sing simultaneously. Because the acoustic waves sum linearly and
different individuals do not synchronize their song patterns, the ampli-
tude modulations of the summed sound pressure waves will have a nearly
Gaussian distribution. Assuming that 5–10 grasshoppers sing at the same
time, the modulation depth of their summed sound waves was estimated
using recorded songs. This yielded values between 8 and 12 dB, i.e., much
less than the modulation depth of an individual song. On the basis of
these observations, Gaussian-distributed AM signals with a modulation
depth of 10 dB were generated (Fig. 1F). To restrict the amplitude values
within a finite range, the tails of the Gaussian distributions were cut off
at 3.5 standard deviations. Because the peak sound pressure level was
always twice the average sound pressure level, the peak sound intensity
was always 6 dB above the average sound intensity. These stimuli will be
referred to as small-modulation-depth (SMD) stimuli.

For all types of artificial stimuli, the final AM signal was used to
modulate the amplitude of a 5 kHz sine tone, the carrier frequency
preferred by low-frequency receptors of acridid grasshoppers (Mich-
elsen, 1971; Römer, 1976; Meyer and Elsner, 1996). Stimuli were digi-
tized to a resolution of 20 kHz, and each stimulus lasted for 10 sec.

Electrophysiology
All experiments were performed on adult, male and female Locusta
migratoria, because these are available throughout the year, and the
physiological properties of their auditory receptors closely match those of
Ch. biguttulus (Ronacher and Krahe, 2000). Legs, wings, head, gut, and
pronotum were removed to immobilize the animals and to facilitate
access to the metathoracic ganglion and tympanal nerve. Preparations
were fixed with wax onto a Peltier element, and their temperature was
kept constant at 30°C, as controlled by a sensor inserted into the abdo-
men. All experiments were performed in a Faraday cage lined with
sound-attenuating foam to reduce echoes. The preparation was placed
between two speakers (D28-2; Dynaudio, Skanderborg, Denmark) that
were oriented toward the animal’s ears at a distance of 35 cm.

The digitized stimuli were played back using Turbolab (Stemmer
Software GmbH, Puchheim, Germany). To allow exact control of sound
intensity, the signal was sent to the speakers via an attenuator (Heinecke,
Seewiesen, Germany) and an amplifier (Diora WS 502 C, Conrad,
Hirschau, Germany). The responses of single low-frequency receptor
neurons to auditory stimuli were recorded intracellularly in the tympanal
nerve with glass microelectrodes (GC-100F, Clark Electromedical In-
struments, Reading, UK) filled with 1 M KCl (20–60 MV).
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Receptor thresholds were characterized using a 5 kHz sine tone at
different intensities and ranged from 30 to 65 dB sound pressure level
(SPL). In one set of experiments the peak stimulus intensity was chosen
to be 10 dB above the receptor’s threshold. This scheme guaranteed that
all stimuli types used have the same AM signal power above the recep-
tor’s threshold (compare also Fig. 1H and section on stimulus prepro-
cessing and calibration).

Stimuli and responses were recorded with a DAT recorder (PC 204 A,
Sony, Tokyo, Japan) at a resolution of 20 kHz and analyzed off-line. The
experimental protocol complied with German law governing animal care.

Stimulus reconstruction
Information theory and systems analysis provide quantitative measures
for the signal-processing capabilities of a neural system. In particular, the
information contained in the spike trains of sensory afferents about an
external stimulus can be estimated using stimulus reconstruction meth-
ods (Bialek et al., 1991; Rieke et al., 1997). Their application is strongly
facilitated by using a priori knowledge about what qualitative aspects of
the stimulus could potentially be encoded by the neuron.

Note that the use of stimulus reconstruction methods does not imply
that we assume that auditory receptor neurons try to map acoustic stimuli
in a one-to-one fashion on their spike trains. On the contrary, by
comparing the reconstruction quality for different stimulus ensembles, we
seek to find out which characteristics of acoustic signals are encoded
faithfully and which features are discarded.

Stimulus preprocessing and calibration. Auditory receptor neurons of
grasshoppers are sensitive to amplitude modulations of broad-band
sound-pressure waves that exceed a certain response threshold. Below
this threshold, the cells remain silent. Therefore, the appropriate pre-
processed stimulus s(t) for applying reconstruction techniques (see Fig.
2) is not the original sound-pressure wave w(t) but that part of the AM
signal that lies in the sound intensity range covered by the particular
receptor. Within the stimulus reconstruction algorithm, therefore, the

4

Figure 1. Stimulus design and preprocessing. A, Sound-pressure wave of
the calling song from a Ch. biguttulus male, characterized by a pro-
nounced amplitude modulation of a broad-band carrier in the 5–40 kHz
range. The song itself is composed of many repetitions of a basic pattern,
termed syllable, plus the adjacent pause. Depending on the individual
animal and the ambient temperature, a syllable plus pause lasts for 60–140
msec and is repeated up to 40 times. B, Left, The AM signal of a short
song section (three syllables) obtained from the sound-pressure wave
shown in A. Middle, Distribution of modulation amplitudes. Right, Power
spectral density of the AM signal. The first peak, at ;8 Hz, corresponds
to the mean duration of a syllable (;125 msec). C, Left, Section of a
calling song from a Ch. biguttulus male that has lost one hindleg. Short, yet
pronounced gaps of 2–3 msec appear within the four syllables. Their
regular occurrence causes a large spectral peak at ;70 Hz (right, arrow).
D, Design of artificial stimuli with the same amplitude distribution and the
same spectrum as the natural song in B. As for all artificial stimuli, the
AM signal is used to modulate a 5 kHz carrier sine wave. E, Design of
artificial stimuli with the same amplitude distribution as in B and a
spectrum that is “white,” i.e., flat up to a certain cut-off frequency, here
100 Hz (right). Deviations from the ideal, flat spectrum result from the
finite signal length. Because of their large modulation depth (24 dB),
defined as the range covered by 95% of the amplitude distribution, such
stimuli are called LMD stimuli. F, Design of artificial stimuli with a
Gaussian amplitude distribution, used as a model of the sound of several
grasshoppers singing simultaneously. These stimuli have a modulation
depth of 10 dB and are referred to as small-modulation-depth (SMD)
stimuli. G, Transformation of the AM signal. Within a finite range of
sound intensities above their response thresholds, receptors discharge
approximately in proportion to the logarithm of the signal amplitude;
therefore, transforming the AM signal logarithmically yields a piecewise
linear curve of firing rate versus sound intensity, as shown schematically
on the lef t. The rising part of this curve has a typical range of 10–20 dB.
The resulting preprocessed LMD stimulus is depicted as thick line (center)
and exhibits a short pause whenever the original amplitude modulation
meanders subthreshold. H, Calibration of SMD and LMD stimuli. Shown
is the suprathreshold power of the respective AM signal. To allow for a
fair comparison of SMD and LMD stimuli, both must have the same
suprathreshold AM signal power in the experiments. This point is indi-
cated by the vertical line in H and by the short horizontal bars in D–F.
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AM signal was first half-wave rectified at the threshold of each cell (see
Fig. 1G) and then used for the stimulus reconstruction algorithm. From
now on, the thresholded AM signal will be referred to simply as “signal.”

The total power of the half-wave-rectified signal depends on the
applied threshold (see Fig. 1H). Both SMD and LMD stimuli have the
same total power in the amplitude modulations, if the peak signal
intensity is chosen to be 10 dB above the receptor’s threshold. The
threshold applied in this case is also indicated by small black bars in
the center panels of Fig. 1, D–F. Given such a calibration of the threshold,
the stimulus ensembles retain differences in two primary traits: contain-
ing pauses (LMD) or lacking them (SMD), and having a periodic (SLS)
or white spectrum (all others).

Linear reconstruction and filter calculation. To reconstruct the signal s(t)
each spike in the recorded spike train y(t), a series of Dirac impulse
functions, is replaced by a linear reconstruction filter h1(t), resulting in
the signal estimate sest(t):

sest~t! 5 h0 1E
0

T

dt h1~t!y~t 2 t!, (1)

where h0 is the mean signal level in the absence of spiking. The param-
eters h0 and h1(t) are determined by minimizing the mean-square error
^nmse(t)2& where the angular brackets ^. . .& denote a time average over the
section of the experiment used for parameter estimation, and nmse(t) is
the time-dependent reconstruction error nmse(t) 5 s(t) 2 sest(t).

To analyze the activity of a population of N receptor neurons, different
reconstruction filters h1, i(t), i 5 1, . . . , N are allowed for each spike train
yi(t), i.e.:

sest~t! 5 h0 1
1
N O

i51

N E
0

T

dt h1, i~t!yi~t 2 t!. (2)

As before, h0 and h1, i(t) are obtained by minimizing the mean-square
reconstruction error.

To restrict the number of parameters to be estimated, each reconstruc-
tion filter was expanded into an orthonormal series of Hermite functions
(Arfken, 1985) of order up to 20. The mean-square-error minimization
then results in a linear system of equations for the expansion parameters,
which can be solved numerically (Rieke et al., 1997, appendix A.8.2;
Press et al., 1992).

By design, reconstruction filters perform above average on the data
section used to estimate the filter parameters. To avoid this bias, filters
were always estimated on 9 of 10 segments of a recording and then
evaluated on the remaining segment. Sampling errors were reduced by
taking averages over repeated permutations of this procedure.

A nonlinear relationship between the AM signal and the firing rate
could require higher-order reconstruction filters for adequate signal

reconstruction. Such filters seem to suggest relational codes, i.e., coding
schemes that involve higher orders of the spike-train statistics, as in
interspike-interval-based codes (Theunissen and Miller, 1995). Because
the firing-rate responses of auditory receptors of grasshoppers are ap-
proximately threshold-linear if amplitude modulations are measured on
a logarithmic scale (Römer, 1976; Stumpner and Ronacher, 1991;
Ronacher and Krahe, 2000), this potentially misleading interpretation of
higher-order kernels was obviated by transforming s(t) and sest(t) into the
decibel scale.

In reconstructions from multiple spike trains, nonlinearities arise if the
intensity ranges of the different neurons do not fully overlap. This
problem was avoided in reconstructions from multiple traces by including
only neurons that had approximately the same threshold.

Firing-rate adaptation can be described in principle by higher-order or
time-dependent reconstruction filters, but their estimation requires enor-
mous amounts of data. In the studies involving artificial stimuli, these
complications were circumvented by discarding the first second of the 10
sec neural response patterns.

Signal-to-noise ratio. The reconstruction error nmse(t) can be separated
into random and systematic components. Systematic errors occur if one
attempts to reconstruct a signal s(t) that is incompatible with the signal
the neuron actually encodes. For instance, if only a low-pass-filtered
version of the signal is encoded, any attempts to reconstruct higher
frequencies have to fail. Systematic errors can be corrected for by
introducing a frequency-dependent gain g(f) such that sest(f) 5 g(f)
[s(f) 1 neff(f)], where neff(f) denotes the random errors or “effective
noise,” as referred to the input (Theunissen et al., 1996; Rieke et al.,
1997).

Given the effective noise neff(f), the success of a stimulus reconstruc-
tion for each frequency can be measured by the signal-to-noise ratio
(SNR):

SNR~ f ! 5
S~ f !

Neff~ f !
5

s~ f !s*~ f !

neff~ f !n*eff~ f !
, (3)

where S(f) and Neff(f) are the power spectral densities of the signal and
the effective noise, respectively. In the linear filter case, the gain g(f) is
related to the signal-to-noise ratio by g(f) 5 SNR(f)/(1 1 SNR(f)). Using
this relation, one can also calculate the signal-to-noise ratio based on the
power spectral densities of estimate and reconstruction error, SNR(f) 5
Sest(f)/Nmse(f).

A high SNR indicates an accurate reconstruction, whereas an SNR of
zero implies chance level. The SNR allows one to assess which frequency
components are best decoded by signal reconstruction. Reconstruction of
signals with high bandwidth serves to estimate the cut-off frequency of
the system; this cut-off will be unveiled as the frequency where the
signal-to-noise ratio approaches zero.

A measure for the overall success of a reconstruction can be defined by
using the total power of signal and noise:

Figure 2. Stimulus preprocessing and reconstruction. The mechanics of the receiver’s ear extract the slow amplitude modulation s(t) of a rapidly
oscillating sound-pressure wave w(t). Auditory receptor neurons then encode s(t) into the membrane voltage V(t). As a first step of the stimulus
reconstruction, the spike train y(t) is extracted from the voltage trace. Within linear reconstruction, each spike is then replaced by an optimal filter
function to yield sest(t), the estimate of s(t). As shown by this example, stimulus reconstruction does not aim at recovering the original, complete physical
stimulus w(t) but instead requires the identification of a representation of the stimulus that is relevant for the animal, in the present case the AM signal s(t).

3218 J. Neurosci., May 1, 2001, 21(9):3215–3227 Machens et al. • Stimulus Representation by Auditory Receptors



SNR 5

E
0

`

df S~ f !

E
0

`

df Neff~ f !

. (4)

Information transfer. The mutual information rate Rinfo quantifies how
many bits of information about the signal s(t) are carried by a spike train
per second. For example, a value of Rinfo 5 1 bit /sec means that under
ideal circumstances, the uncertainty about the stimulus can be halved
every second by reading the corresponding spike train. Note that themu-
tual information rate can be large even if the signal is only poorly
reconstructed, as might occur for stimuli with high bandwidth.

If s(t) is a Gaussian random signal, a lower bound on Rinfo (Rieke et al.,
1997) is given by:

Rinfo $E
0

`

df log2@1 1 SNR~ f !#. (5)

LMD and SMD signals were generated from Gaussian distributions by
nonlinear but invertible transformations. Such transformations conserve
the information carried by the signal. After performing the correspond-
ing inverse transformation on both the AM signal and its reconstruction,
the lower bound on Rinfo is therefore still given by Equation 5. Accord-
ingly, the signal-to-noise ratio in Equation 5 was calculated using the
original Gaussian AM signal and the inversely transformed reconstruc-
tion. Furthermore, the artificial signals were reconstructed without ap-
plying a threshold to the preprocessed signal, because the reconstruction
errors thus obtained followed a Gaussian distribution more closely,
making it more likely that Equation 5 is a tight lower bound. Because the
receptor neurons do not encode details of the subthreshold signal (see
also Fig. 4D), the information rates thus computed must be conveyed
almost exclusively by the suprathreshold signal.

Coding efficiency. Given a time resolution Dt, the efficiency of a
neuron to transmit information can be measured by comparing the
estimated mutual information rate Rinfo(Dt) with the information-
theoretic limit Rmax(Dt), which is reached if the spike train is maxi-
mally disordered, i.e., Poisson (Rieke et al., 1995). The coding
efficiency e(Dt) is then defined as:

e~Dt! 5
Rinfo~Dt!
Rmax~Dt!

, (6)

and takes values between 0 and 1. Although Rmax(Dt) tends to infinity for
Dt 3 0, this is not the case for Rinfo(Dt), which will instead achieve the
value Rinfo given in Equation 5. To yield nontrivial results, the coding

efficiency, therefore, has to be evaluated at a finite time resolution that
reflects spike-timing variability caused by intrinsic noise sources. This
time resolution was estimated by cross-correlation analysis. The full
width at half maximum of the cross-correlation peak was calculated for
each two spike trains recorded from the same stimulus. The smallest
width obtained, Dt ' 1 msec, was then taken to be the approximate time
resolution of the system. Values of Dt ranging from 0.5 to 2 msec yielded
comparable results and underline the robustness of the method.

Redundancy. Let Rinfo(1), Rinfo(2), and Rinfo(1, 2) denote the mutual
information rates obtained from reconstructions based on two individual
spike trains and from the corresponding population reconstruction, re-
spectively, with all quantities calculated at a time resolution of Dt 5 0.1
msec. A measure of redundancy r of these two cells was defined as:

r 5
Rinfo~1! 1 Rinfo~2! 2 Rinfo~1, 2!

min$Rinfo~1!, Rinfo~2!%
, (7)

where min{x, y} denotes the smaller of the two variables x and y. A value
of r 5 1 implies complete redundancy and r 5 0 corresponds to complete
independence. Negative values of r occur if the two cells are synergistic.

Because identical spike trains carry the same information, their redun-
dancy is 1. The reverse, however, is not true: a redundancy of 1 does not
imply that the spike trains were identical, because even two different
spike trains might carry identical information. Therefore, redundancy is
not simply a measure of spike-train variability, but a measure of the
information-theoretic consequences of that variability.

Gap detection. A gap is a brief, silent interruption of an acoustic
stimulus. Sampled at twice the cut-off frequency of the AM signal, a
stimulus was defined to exhibit a gap whenever the AM signal remained
below the neuron’s threshold for exactly one sampling point. Therefore,
the average length of a gap is simply given by the inverse of the
corresponding sampling frequency. Note that in this definition a gap is
not a completely silent part of the stimulus, but rather a part that appears
to be silent as perceived by the investigated neuron. When stimuli are
presented with a peak amplitude of 10–20 dB above threshold, LMD
stimuli contain a significant number of gaps, whereas SMD stimuli
comprise at most a few gaps during the whole course of the stimulus.

A gap was called detected if the reconstructed stimulus at that instant
was smaller than a detection threshold (see Fig. 3, correct detection).
Varying the detection threshold balances the tradeoff between the two
types of error that might occur: a miss when the stimulus exhibits a gap
that was not detected, or a false alarm when the stimulus exhibits no gap,
but the reconstruction falsely indicates a gap (see Fig. 3, miss and false
alarm).

The tradeoff between miss and false alarm can be quantified by the
receiver operating characteristics (Poor, 1994), in which the probability
of correct detection is plotted against the probability of false alarm, both
being parametrized by the detection threshold. This measure differs from
the previous measures in that it focuses solely on the reliability of gap
detection and does not take into account how accurately the stimulus is
encoded between two gaps.

RESULTS
To identify essential features of acoustic communication signals
and their neural representations in grasshoppers, auditory recep-
tor neurons were stimulated with natural and artificial sounds.
Recordings were performed in the migratory locust L. migratoria,
a well established model system (Stumpner and Ronacher, 1991;
Ronacher and Krahe, 2000). The artificial stimuli were designed
to vary the most salient statistical properties of grasshopper
sounds, which consist of a broad-band carrier. Its amplitude
modulations (the AM signal), illustrated in Figure 1A–C, carry
the behaviorally relevant information. Typically, the songs alter-
nate between noise bursts and pauses, leading to a characteristic
double-peak distribution of sound amplitudes (Fig. 1B, center). To
investigate the importance of this structural aspect, two different
classes of stimuli were generated.

The first class consists of random stimuli that have the same
amplitude distribution as a typical grasshopper song and thus
imitate the gap-infiltrated structure of these songs. Featuring a

Figure 3. Gap detection. After sampling a stimulus at twice its cut-off
frequency (filled squares), gaps were defined to be all those parts of the
stimulus that fell below threshold for exactly one sampling point (top
trace). A gap was classified as correctly detected if the reconstructed
stimulus (bottom trace) was smaller than a given detection threshold;
otherwise the gap was classified as missed. A false alarm occurs when
the reconstructed stimulus falls below threshold but the signal contains
no gap.
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modulation depth of ;24 dB (Fig. 1B, D, E), these stimuli are
called large-modulation-depth (LMD) stimuli.

Within the second class, stimuli have a Gaussian amplitude
distribution (Fig. 1E) with a modulation depth of 10 dB and are
called small-modulation-depth (SMD) stimuli. These random
stimuli simulate the combined sound pattern of a group of 5–10
grasshoppers singing simultaneously, such that the song pauses of
individual songs are filled by the other songs. Additionally, the
Gaussian distribution facilitates the comparison with previous
stimulus-reconstruction studies in other sensory systems (Bialek
et al., 1991; Rieke et al., 1995; Theunissen et al., 1996; Wessel et
al., 1996).

Because the shortest behaviorally relevant time scales of the
AM signals are ;1–2 msec (von Helversen, 1972; von Helversen
and von Helversen, 1998), frequency components of at least
250–500 Hz are required in the random stimuli. To analyze the
neural representation at these short time scales, LMD and SMD
stimuli were designed with piece-wise flat spectral characteristics
and cut-off frequencies of up to 800 Hz. Additionally, to test
whether the specific mix of frequency components found in nat-
ural songs might be of importance, one of the LMD stimuli
exhibited a song-like spectrum (SLS). In all experiments, the
amplitude distribution for each stimulus was kept constant by
fixing the integrated AM signal power. A larger bandwidth,
therefore, corresponds to a lower power spectral density.

This set of artificial AM signals with well defined amplitude
distributions and spectral characteristics allowed us to test
whether auditory receptors can encode arbitrary stimulus features
down to the millisecond time scale and whether the pauses and
gaps in individual songs are of any importance for the encoding
procedure. Moreover, estimating the amount of information that
receptors transmit becomes a straightforward task (see Materials
and Methods).

Low-frequency auditory receptors of acridid grasshoppers re-
spond best to amplitude-modulated sounds with carrier frequen-
cies in the 4–8 kHz range (Römer, 1976; Stumpner and
Ronacher, 1991). Above their threshold and below saturation, the
firing rate of the receptors increases approximately linearly with
sound pressure level if the latter is measured on a logarithmic
scale (Römer, 1976; Stumpner and Ronacher, 1991). All attempts
to reconstruct the original sound pressure wave failed (data not
shown). A representation of the signal appropriate for stimulus
reconstruction rather consists of a thresholded AM signal in
decibels. To reconstruct the preprocessed AM signal from a spike
train, each spike is replaced by a filter (Fig. 2), resulting in a
smooth time-varying function. After minimization of the mean-
square distance between this function and the original AM sig-
nal, the (optimal) linear reconstruction of the signal is obtained
(see Materials and Methods).

In all, responses were recorded from n 5 27 receptor neurons,
and each individual stimulus class was presented to up to 10
neurons. Stimuli were presented with peak intensities ranging
from 3 to 21 dB above the threshold of individual receptors,
entailing firing rates from 40 to 160 Hz.

Single auditory receptors are capable of encoding
sound-amplitude modulations with high signal-to-
noise ratios
As illustrated in Figure 4, amplitude modulations of sound pres-
sure waves can be reconstructed from the spike trains of individ-
ual auditory receptors. Figure 4A displays the amplitude modu-
lation of a 5 kHz tone, the resulting spike train from an auditory

receptor, and the estimated amplitude modulation as recon-
structed from this spike train. The stimulus is an LMD stimulus
with a spectrum of amplitude modulations that is flat up to a
cut-off frequency fc of 50 Hz. The original AM signal was thresh-
olded at 34 dB, corresponding to the experimentally determined
threshold of the investigated cell. The signal estimate closely
follows the thresholded signal, with deviations of at most a few
decibels. As quantified in Figure 4B, the distribution of recon-
struction errors has a standard deviation of ;1.4 dB.

The linear reconstruction filter is shown in Figure 4C and
represents the contribution of a single spike, situated at time zero,
to the reconstruction of the AM signal. The central peak of the
filter is shifted by 7–8 msec from zero, reflecting the intrinsic
delay between the stimulus presentation and the response of the
auditory receptor. Results obtained for cut-off frequencies from

Figure 4. Reconstruction of an LMD signal with 50 Hz cut-off frequency
from the responses of a single receptor. A, Preprocessed stimulus, spike
train, and stimulus estimate. The stimulus was thresholded at 34 dB, the
threshold of this particular neuron. B, Distribution of reconstruction
errors. The distribution has a standard deviation of only 1.4 dB, which
indicates that the preprocessed stimulus was reconstructed quite accu-
rately from the spike train, depicted below the stimulus in A. C, Linear
reconstruction filter. The estimated signal is obtained by a convolution of
the spike train with this filter, which amounts to replacing each spike by
the filter function. D, Dependence of the reconstruction quality on the
stimulus representation. The AM signal was split into a suprathreshold
and a subthreshold signal, each of which was independently reconstructed
from the spike train. The calculated signal-to-noise ratios of the supra-
threshold signal (solid line) reach their maximum when the threshold used
for splitting matches the threshold of the specific neuron. At this thresh-
old, reconstruction of the subthreshold AM signal fails almost completely,
as shown by a signal-to-noise ratio of ,0.5:1 (dashed line).
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25 to 400 Hz and intermediate firing rates indicate that the full
width at half maximum, w, of the optimal reconstruction filter is
roughly given by w ' (2fc)

21. The qualitative shape of the filter
remains the same as that seen in Figure 4C (data not shown).

The signal-to-noise ratio (SNR) quantifies the reconstruction
success by the ratio of AM signal variance to the variance of the
effective noise as referred to the input (see Materials and Meth-
ods). In the example illustrated in Figure 4, the signal-to-noise
ratio was 6:1, demonstrating that even a single auditory receptor
can accurately represent the time course of the AM signal. With-
out proper thresholding of the AM signal, the SNR would de-
crease significantly, to values of ;3:1, as depicted in Figure 4D.
By contrast, applying an upper threshold and trying to reconstruct
only the subthreshold portion of the AM signal leads to consid-
erably worse results (Fig. 4D, dashed line). At the threshold
indicated by the vertical line, the SNR in this case is ,0.5:1.
Hence, little if any information can be recovered from the sub-
threshold part of the stimulus. These results underline the impor-
tance of carefully adjusting stimulus-reconstruction techniques to
the specific properties of the neural system under study.

Stimuli with gaps are transmitted with higher
information rates and coding efficiencies than stimuli
without gaps
To allow for a direct comparison of stimuli with large and small
modulation depth, a set of experiments was performed in which
the AM signal power above the receptor threshold was made to
be equal for both classes of stimuli. For this purpose, the AM
signals were thresholded, and the remaining variance in the AM
signals was computed. As shown in Figure 1H, the above-
threshold AM signal power is the same for LMD and SMD
stimuli if the peak stimulus intensity is adjusted to be 10 dB above
the receptor threshold.

To compare the reconstructions obtained for different stimuli,
we applied three measures: (1) signal-to-noise ratios, to deter-
mine how accurately a given reconstruction follows an AM signal
(Fig. 5A); (2) information rates, to assess how much information
is conveyed by each spike train about the stimulus (Fig. 5B); and
(3) coding efficiencies, to measure how efficient receptor neurons
use their resources to transmit that information (Fig. 5C) (see
also Materials and Methods).

With most of the original power in the LMD stimuli well below
receptor threshold, there exists no a priori reason to expect any
difference in the signal reconstruction success for the two cali-
brated signals. Nonetheless, for all three measures, LMD stimuli
clearly outperform SMD stimuli. No matter for which cut-off
frequency, LMD stimuli can always be reconstructed more accu-
rately than SMD stimuli. In addition, spike trains always convey
more information about LMD than SMD stimuli, and receptor
neurons use their resources more efficiently when presented with
LMD stimuli. Hence, receptor neurons are much better suited to
convey information about stimuli that feature a natural amplitude
distribution and, therefore, gaps.

On the other hand, matching the spectral properties of the
songs, such as the one depicted in the right panels of Figure 1, B
and D, has almost no effect. Although the sharp spectral peaks of
the songs confer strong rhythmicity to the natural grasshopper
calls, rhythmicity neither impairs nor aids the quality of the
reconstructions. Given that the predominant portion of the nat-
ural spectrum falls between 0 and 50 Hz, the signal-to-noise
ratios, information rates, and coding efficiencies of the spectrally
matched stimulus (LMD SLS) should be compared with that with

Figure 5. Summary of all experiments with equal suprathreshold AM
signal power. Altogether 27 cells from 14 animals were analyzed, with
mean firing rates ranging from 40 to 100 Hz. The sound intensity relative
to the receptor thresholds was chosen such that the suprathreshold power
of the AM signals of LMD and SMD stimuli was equal. A, Signal-to-noise
ratio for natural and artificial stimuli. Because the signal variance was kept
constant, the signal-to-noise ratio, measuring the reconstruction quality,
falls off with increasing cut-off frequency fc for LMD as well as SMD
stimuli. The signal-to-noise ratio for stimuli with a song-like spectrum
(SLS) is comparable to that of LMD stimuli with fc 5 50 Hz. B, Mutual
information rate Rinfo, quantifying the information carried by the spike
train about the AM signal. C, Coding efficiency e, measuring the fraction
of the maximum possible information transfer. Because the probability
distribution of natural songs is unknown, neither Rinfo nor e can be
calculated for these stimuli. LMD stimuli with a cut-off frequency of 200
Hz result in the largest values for Rinfo and e, suggesting that single
receptor neurons are optimized for stimuli with such statistics. Thick lines
indicate the median, boxes indicate the quartiles, and bars indicate the
maximum and minimum observed values.
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a 50 Hz cut-off frequency (LMD 50). Similar values for all three
quantities indicate that filling in the valleys between the peaks in
the spectrum to create the “white” LMD stimulus has almost no
consequences.

The highest information rates (up to 180 bits/sec) and coding
efficiencies (up to 40%) are reached for the LMD stimulus with
a cut-off frequency of 200 Hz. This stimulus has a natural ampli-
tude distribution and varies randomly on time scales down to 2.5
msec. Among all stimuli tested, this stimulus best exploits the
operating regime of a receptor neuron.

For all stimuli, signal-to-noise ratios decrease with increasing
cut-off frequency. For a linear system, this is to be expected
because the power density of the AM signal decreases with
increasing cut-off frequency, a consequence of keeping the total
power of the AM signals constant.

High-frequency amplitude modulations of random
stimuli cannot be reconstructed from single receptors
To analyze the frequency–response properties of the system
under investigation, signal-to-noise ratios were resolved in the
frequency domain (Fig. 6). Our data show that for stimuli with
high cut-off frequencies, slow temporal variations are represented
better than fast variations. The decrease of the measured SNRs
with frequency suggests that the auditory receptors act as band-
pass filters for the AM signal, instead of being tuned to any
particular modulation frequency. High signal-to-noise ratios can
be achieved even for artificial broad-band stimuli by matching the
amplitude distribution of the natural grasshopper calling songs, as
in the LMD stimuli.

Signal-to-noise ratios decrease for high cut-off frequencies, as
seen in Figure 6D–F. Faster variations can be reconstructed only
for LMD stimuli, in which the AM signal repeatedly falls below
threshold. Even then, no significant amount of information about
the stimulus is retrievable for frequencies .400 Hz (Fig. 6F). On
the basis of the spike train of a locust auditory receptor, decoding
arbitrary signal features at time scales of 1–2 msec is nearly
impossible. This drop-off at higher frequencies does not depend
on the mean firing rate of the receptor (data not shown).

Reading from multiple spike trains improves the
reconstruction of high-frequency
amplitude modulations
Distributed representations based on the activity patterns of a
population of many auditory receptors admit an improved reso-
lution of stimulus features in both time and intensity. Addition-
ally, the population serves to increase the overall range of sound
intensities covered, because the 40–60 low-frequency receptor
neurons on each body side of the animal have thresholds spread-
ing over .40 decibels SPL (Römer, 1976; Jacobs et al., 1999;
Ronacher and Krahe, 2000). The question then poses itself: can
the population encode arbitrary stimulus features of 1–2 msec
duration, the minimal time needed to detect the gap in the song
of a “one-hindlegged” male?

No evidence has been found to date for any physiological
coupling between auditory receptors in acridid species. On the
assumption that the responses of different receptors are indepen-
dent and the receptor properties do not change during the exper-
iment, sequential recordings from different cells may be pooled to
estimate the information carried by a population of auditory
receptors.

To quantify the information that can be gained by pooling
responses, we computed the information redundancy of two cells
as a function of the stimulus type presented. Both cells had the

same threshold and encoded the same stimulus range. As shown
in Figure 7A (lef t panel), repeated LMD stimuli with low cut-off
frequencies (25, 50, and 100 Hz) result in highly redundant spike
trains. For these stimuli, then, pooling responses yields almost no
additional information. By contrast, SMD stimuli with higher
cut-off frequencies (100 Hz and more) elicit spike trains that carry
largely independent information.

The information redundancy calculated over repeated stimula-
tions of the same cell (Fig. 7A, right panel) is almost the same as
that from different cells (Fig. 7A, lef t panel). This indicates that
the encoding procedure of cells sensitive to the same stimulus
range is almost identical. It thus matters little whether spike trains
from the same or different neurons are being compared, as long as
the neurons have the same sound-intensity threshold.

The information gained by additional spike trains must come
from the variability between these spike trains, because identical

Figure 6. Signal-to-noise ratio for the artificial stimuli, shown in the
frequency domain. The cut-off frequency fc of the AM signal was varied
while the integrated AM signal power was kept constant. Again, sound
intensities were chosen such that above the receptor thresholds, LMD and
SMD stimuli had the same AM signal power (4.8 dB 2). Firing rates were
40–60 Hz for the LMD stimuli (solid lines) and 60–80 Hz for the SMD
stimuli (dashed lines). Although LMD stimuli are encoded by fewer
spikes, their longer subthreshold periods and steeper onsets result in more
accurate reconstructions, as shown by the higher signal-to-noise ratios.
The fine structure of the curves is not statistically significant because the
signal-to-noise values have relative errors of 17.5%.
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spike trains are necessarily completely redundant. The trial-to-
trial variability for some of the tested stimuli can be inferred from
Figure 7, B and C. Spike-train variability, however, does not
always correlate with nonredundant information. For instance,
although spike responses elicited from an LMD stimulus with
fc 5 200 Hz (Fig. 7C, right) are more reliable than those elicited
from an SMD stimulus with fc 5 25 Hz (Fig. 7B, lef t panel), the
latter has a higher redundancy.

If two receptor neurons respond to distinct, non-overlapping
stimulus intensity ranges—in other words, if each receptor
“hears” a different part of the stimulus—the information redun-
dancy in the spike trains decreases correspondingly (data not
shown).

Given the reduced redundancy of information for stimuli with
higher bandwidth and/or small modulation depth, pooling neu-
ronal responses should aid most in uncovering information about
short-time and small-intensity features of the AM signal. This is

indeed true. For instance, Figure 8A, lef t panel, shows that the
information rate for the SMD stimulus with a cut-off frequency of
100 Hz increases much faster with the number of spike trains than
the information rate for the LMD stimulus, which begins to
saturate already when four or five spike trains are used for the
reconstruction.

Signal-to-noise ratios based on a pool of eight spike trains (Fig.
8B) are significantly improved as compared with SNRs in the
reconstruction from a single spike train, especially at high fre-
quencies (Fig. 6D–F). Pooling spike trains is similarly efficient and
important for stimuli with a larger bandwidth. A pool of eight
spike trains evoked by the SMD stimulus with a cut-off frequency
of 200 Hz provides more than four times as much information as
a single spike train (Fig. 8A). Even more dramatic results could be
expected for SMD stimuli with higher cut-off frequency, but the
measured values for Rinfo are too small and too variable to give
statistically significant results after cross-validation. Finally, for
cut-off frequencies fc 5 200, 400, or 800 Hz, the information rate
for LMD stimuli increases by roughly 100 bits/sec when pooling
eight spike trains (Fig. 8A), as compared with reading from a
single spike train.

Signal-to-noise ratios decay quickly for very high modulation
frequencies but are still *1:1 at 300 Hz, corresponding to a time
resolution that samples stimulus features every 1.5–2 msec (Fig.
8B) (fc 5 400 Hz). Stimulus features are thus faithfully repre-
sented at all behaviorally relevant time scales. This increase in the
coding performance is possible because cell-to-cell variations in
the response patterns of individual receptors may be exploited on
the population level.

Reading from multiple spike trains improves the
detection of gaps
Although high signal-to-noise ratios indicate that the reconstruc-
tion accurately captures the time course of the AM signal, it is
useful to focus on brief gaps in the AM signal, because these are
of specific behavioral relevance. The AM signal was defined to
exhibit a gap during all times when it was in the subthreshold
range for exactly one time step, where the time step is defined as
the inverse of the sampling frequency (twice the cut-off fre-
quency) of the signal. A gap was considered to be detected if the
reconstructed AM signal fell below a detection threshold during
the same time instant (see Materials and Methods and Fig. 3).

Figure 8C shows the receiver operating characteristics (ROCs)
for different LMD stimuli (SMD stimuli will only rarely fall below
threshold and were excluded therefore from this analysis). Two
conclusions can be drawn from this figure. (1) Using eight spike
trains instead of a single one significantly enhances the detection
of gaps. (2) In all cases, the ROC curve is asymmetric regarding
the balance between correct detection and false alarm; even for
detection thresholds that lead to few false alarms, almost all gaps
can be detected.

The spurious recognition of gaps can be attributed to the fact
that stimulus parts that come very close to the threshold of the
neuron from above without crossing it might easily be mistaken
for gaps. The nature of the stimulus as a whole, however, may
help to assess whether coming close to the threshold of a partic-
ular neuron truly constitutes a gap. Later processing stages,
taking into account larger sections of the stimulus or multiple
spike trains, can therefore refine the decision of what is a gap and
what is not.

Figure 7. Redundancy and reliability of neural responses. A, Left, Re-
dundancy of spike trains from two different cells as a function of stimulus
type and cut-off frequency. The peak stimulus intensity was 60 dB, and
both cells had a threshold of 50 dB. Neurons convey identical information
about a stimulus if the redundancy equals 1, whereas if the redundancy is
0, they convey independent information. Right, The redundancy of spike
trains from one cell responding to repeated presentations of the same
stimulus. LMD stimuli (1) cause larger redundancy than SMD stimuli
(3), and in both cases, cell-to-cell redundancy is comparable to trial-to-
trial redundancy. B, C, Spike raster plots for one of the cells in response
to the stimuli denoted on the abscissa. In terms of spike timing precision,
the LMD 200 stimulus (C, right) stands out clearly, but other stimuli result
in higher trial-to-trial redundancies (A, right).
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Natural songs can be reconstructed with high quality
from multiple spike trains
On the basis of the results obtained for artificial stimuli, a popu-
lation of receptor neurons seems to be capable of representing
stimulus features on time scales down to 1.5–2 msec. Therefore,
we predicted that also the natural song of an injured, i.e., one-
hindlegged Ch. biguttulus male can be reconstructed from a small
group of spike trains. This is indeed the case, as shown in Figure
9. Here, the AM signal of the song is depicted together with
pooled reconstructions from four spike trains of two receptors
that had roughly the same intensity thresholds. If the sound
pressure level of the song is just above threshold, only the onset of
each syllable is encoded. With increasing sound intensity the full
syllable structure is recovered, including the gaps within each
syllable. Interestingly, at the highest sound intensity, 21 dB above
threshold, the maximum amplitude of each reconstructed syllable
is fairly invariant from syllable to syllable (Fig. 9B, bottom row),

despite the slowly rising overall intensity of the recorded auditory
input (Fig. 9A). This phenomenon coincides with the adaptation
of the firing rate as the sound intensity increases.

Comparing Figure 9 with Figure 5, these adaptation effects also
explain why the signal-to-noise ratios from the natural Ch. bigut-
tulus songs do not reach those obtained from LMD stimuli with
a natural spectrum (LMD SLS) or cut-off frequencies of 25 or 50
Hz (LMD 25 and LMD 50), although the songs contain their
major spectral power in this frequency range. In reconstructions
using artificial stimuli, the first second of the 10 sec response
pattern was discarded to avoid adaptation effects. When recon-
structions of the respective stimuli are based on the first 2–4 sec,
as in the reconstructions of natural songs, the obtained signal-to-
noise ratios decrease and reach values similar to those obtained
from the songs (data not shown).

Retrieval of the AM signal from the entire set of auditory
receptors characterized by staggered intensity thresholds must

Figure 8. Reconstruction from multiple spike trains and gap detection. A, Left, Mutual information as a function of the number of spike trains used in
the reconstruction for stimuli with cut-off frequency fc. Depicted are mean values from a pool of eight spike trains of two cells having the same threshold
(50 dB). The peak stimulus intensity was 60 dB. As the information redundancy shown in Fig. 7 already suggests, information rates improve particularly
strongly for SMD stimuli and stimuli with high cut-off frequency. B, Signal-to-noise ratio when all eight spike trains are combined. SMD stimuli with
cut-off frequencies of 400 and 800 Hz are not shown because they led to insignificant information transfer and SNR values near unity. Signal-to-noise
ratios obtained from the full pool of spike trains are significantly larger than those calculated for single cells but decrease rapidly at high frequencies.
Signal components .400 Hz are thus still poorly represented in the stimulus reconstruction. C, Receiver operating characteristics for gap detection as
a function of the number of spike trains (1 vs 8) used for the reconstruction. Shown are the probability of detecting a gap (correct detection) versus the
probability of falsely predicting a gap (false alarm). The dashed identity curve marks chance level. Only LMD stimuli are shown, because SMD stimuli
contain almost no gaps. Using all spike trains significantly increases the gap detection performance.
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emphasize the start of each syllable, because many spikes in
different trains coincide at the syllable upstroke (Adam, 1977;
Ronacher and Römer, 1985). Stimulus reconstructions from the
full receptor population therefore will inevitably display system-
atic deviations from the original AM signal structure, emphasiz-
ing certain features, in particular rapid increases of the sound
intensity after a pause or gap, and downplaying others.

DISCUSSION
Mate finding of various insects, such as cicadas, crickets, and
grasshoppers, largely relies on acoustic communication. This re-
quires the reliable detection and recognition of conspecific acous-
tic signals that might be corrupted by various noise sources.
Often, signal recognition is not based exclusively on the accep-
tance of the correct species-specific sound pattern, but also in-
volves active rejection of signals that contain wrong or suspicious
components. For example, female Ch. biguttulus grasshoppers do
not respond to calling songs if these contain short gaps that are
not part of the song of intact males (von Helversen, 1972; von
Helversen and von Helversen, 1998).

In the present study, stimulus reconstructions were performed

to analyze the representation of such behaviorally relevant sig-
nals. Reconstructions from the spike trains of single receptor
neurons demonstrate that even single cells are capable of encod-
ing amplitude modulations with high signal-to-noise ratios (Fig.
4). In addition, our data show that sounds with large modulation
depth are encoded with much higher signal-to-noise ratios, infor-
mation rates, and coding efficiencies than stimuli with small
modulation depth. Although LMD stimuli show greater raw
amplitude variations, in general the encoding of SMD stimuli is
still poorer even when the AM signal power above threshold is
identical in the two classes of stimuli (Figs. 5, 6). Matching the
spectral properties of the songs as in the SLS stimulus, on the
other hand, does not increase signal-to-noise ratios.

Spikes are triggered with high reliability and temporal preci-
sion when the sound intensity rapidly passes the firing threshold,
as occurs at the beginning of a syllable of the grasshopper calling
song (Adam, 1977; Ronacher and Römer, 1985). This phenome-
non emphasizes the paramount importance of gaps and pauses
for the recognition of acoustic stimuli, because the precision in
spike timing leads to a faithful representation of the suprathresh-
old sound pattern. Grasshoppers seem to exploit this effect in the
design of their songs, which consist of repeated patterns of sound
and (relative) quiet.

Highest rates for the information transfer of single cells are
observed for stimuli with large modulation depth and a cut-off
frequency of 200 Hz (Fig. 5). This finding should be compared
with behavioral studies in which various artificial auditory stimuli
were presented that were generated by filtering the Fourier com-
ponents of model songs with regular or irregular syllable compo-
sition (von Helversen and von Helversen, 1998). These studies
demonstrate that depending on the original syllable structure,
Fourier components between 150 and 300 Hz are required by Ch.
biguttulus females to reliably detect gap signals. Together, these
two results suggest that the response properties of single receptor
neurons are optimized for features of the acoustic environment
that are of prime importance for behavioral decisions.

Against background noise generated by competing grasshop-
pers, other sound sources, and multiple sound reverberations in
the habitat, the effective modulation depth of an individual song,
as evaluated by a female, decreases rapidly with the distance of
the male singer. With increasing distance, therefore, the song no
longer resembles an LMD stimulus and is expected to become
more and more similar to an SMD stimulus in its modulation
depth. This implies that the precise shape of the amplitude
modulations of the song can no longer be reconstructed faithfully
because SMD stimuli lead to much lower signal-to-noise ratios
than LMD stimuli (Fig. 5A). Heard at a distance in the field,
there is thus no large difference between the reconstructed song
of an intact and an injured male grasshopper. We thus predict that
females only discriminate against one-hindlegged males if they
are nearby. In fact, Ch. biguttulus females avoid mating with such
males (Kriegbaum and von Helversen, 1992). At close distances,
the high signal-to-noise ratios for LMD stimuli (Fig. 5) should
also allow the detection of much finer details in a song, which
might provide the female with additional information about the
male’s fitness.

Distributed codes involving many receptor neurons help to
represent the acoustic environment in greater detail, especially
improving the resolution for stimuli that cannot be reconstructed
well from single spike trains (Fig. 8). Combining receptor neurons
that cover the same sound intensity range helps in two important
ways. (1) The bandwidth of modulation frequencies that can be

Figure 9. Reconstruction of the calling song of a “one-hindlegged”
grasshopper. A, AM signal. This signal has not yet been thresholded and
is displayed on a decibel scale. B, Reconstruction of the signal, thresh-
olded at 55 dB, for different stimulus intensities (peaks at 58, 64, 70, and
76 dB). Four spike trains from two cells with thresholds of 55 dB were
pooled. At sound-pressure levels just exceeding the firing threshold, only
the onset of each syllable is encoded in the spike train. With increasing
sound intensity, more and more details of the song appear in the recon-
struction, until at 21 dB above threshold even the short gaps of 2 msec
length are almost perfectly preserved. Note that in the last reconstruction,
the maximum amplitude of each reconstructed syllable remains approxi-
mately the same throughout the entire song. This demonstrates that
adaptation effects balance the rising overall intensity of the song. Down-
stream processing stages therefore receive a fairly invariant representa-
tion of each syllable onset.
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faithfully encoded is increased, which leads to a greater detect-
ability of very short gaps (down to 1.5–2 msec). In fact, the
resolution achieved by the receptor neurons matches the resolu-
tion limits that have been found in behavioral experiments. (2)
The representation of stimuli with a small modulation depth is
enhanced. Information that is gained about such stimuli might
help grasshoppers to detect acoustic communication signals in a
noisy environment.

Strong correlations in the response patterns across neurons
limit the information gained by considering multiple spike trains;
the net information rate saturates at five to eight combined spike
trains. This number should be compared with the number of
receptor cells that have a linear firing rate characteristic in a
specified intensity range. Given the threshold distribution mea-
sured by Römer (1976), a maximum of five receptors covering the
same intensity range appears to be a realistic estimate. Interest-
ingly, similar numbers for information saturation have been found
for peripheral neurons in other sensory systems (Warland et al.,
1997; Stanley et al., 1999).

Because the grasshopper calling songs are matched to the
properties of single auditory receptor neurons, it is natural to ask
whether the receptors are optimally adapted to the environment
at the population level. The distribution of receptor thresholds is
species dependent; hence, the thresholds could reflect the adap-
tation of a given grasshopper species to a specific environment.
Although a thorough evaluation awaits further study, one fact is
already clear: the population of spike trains is less efficient in the
Shannon-information sense than a single spike train. The repre-
sentation of an LMD stimulus recoverable from a single spike
train captures up to 40% of the theoretical maximum information
about the stimulus that the spike train could possibly convey. A
set of eight receptor spike trains yields only up to 8% of the
corresponding theoretical maximum, because receptor neurons
encoding the same intensity range do not spike independently of
each other.

The high cell-to-cell redundancy in the response to stimuli with
large modulation depth suggests that synchronous response pat-
terns are caused solely by stimulus locking and do not carry
additional information based on the relative timing of different
spike trains. Synchronicity may nevertheless serve as an important
signal for downstream neurons and improve their capability to
reliably detect rapid stimulus onsets. In addition, a high cell-to-
cell redundancy endows the system with fault tolerance with
respect to failure of individual receptors.

With appropriate preprocessing of the stimulus, the linear
stimulus reconstruction from the response of a single neuron can
be interpreted as an estimate of the firing rate of that neuron. The
high values obtained for signal-to-noise ratios, information rates,
and coding efficiencies (Fig. 5) thus indicate that a firing-rate code
suffices to recover large amounts of information. Our results do
not suggest the use of a relational code, i.e., a code that involves
higher-order moments of the spike train, as in interspike-interval-
based coding schemes.

In closing, let us note that the application of systems analysis
methods based on white-noise signals (Marmarelis and Marmare-
lis, 1978) to the auditory system has a long history; see Eggermont
(1993) for an overview. When studying auditory receptor neurons
of L. migratoria, Sippel and Breckow (1983) pointed out that the
response properties depend strongly on the test stimuli used,
which in their case were sinusoidal and Gaussian white-noise
signals. Motivated by findings of this type, various recent studies
have specifically addressed the role of natural-scene statistics for

the processing of acoustic stimuli. For example, Rieke et al.
(1995) showed that auditory afferents in bullfrogs transmit the
most information about artificial stimuli with a spectrum that
matches that of conspecific calls. For auditory receptor neurons of
grasshoppers, it is not the spectrum but the amplitude distribution
of the song that is important. The importance of amplitude
distributions has also been demonstrated by Attias and Schreiner
(1998) in the inferior colliculus of cats showing that highest
information rates are reached for stimuli with an amplitude
distribution that resembles that of natural sounds.

A close match of the response properties of a sensory system
with the statistics of the most relevant natural stimuli has long
been identified as a functionally important evolutionary design
principle. The relevance of this principle for auditory systems has
mainly been discussed with respect to the frequency domain
(Suga, 1989). The studies of Rieke et al. (1995), Attias and
Schreiner (1998), and Theunissen et al. (2000) suggest that also in
the temporal domain, auditory coding has evolved to optimally
exploit the regularities of behaviorally significant signals, most
importantly conspecific communication signals. Our results on the
neural processing of grasshopper calling songs demonstrate that
the same principle holds even in an insect system. Together, these
studies imply that any quantitative analysis of computations per-
formed by auditory systems requires a proper understanding of
the statistics of natural stimuli.
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