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The investigation of input-output systems often requires a sophisticated choice of test inputs to make
the best use of limited experimental time. Here we present an iterative algorithm that continuously
adjusts an ensemble of test inputs on-line, subject to the data already acquired about the system under
study. The algorithm focuses the input ensemble by maximizing the mutual information between input
and output. We apply the algorithm to simulated neurophysiological experiments and show that it serves
to extract the ensemble of stimuli that a given neural system “expects” as a result of its natural history.
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Biophysical systems often have many degrees of
freedom, and thus one needs large numbers of variables
and parameters to describe them. Without strong prior
knowledge about the intrinsic dynamics of such a system,
one is left with inferring its function from data obtained
by experiments or observations. Given a system where we
control a set of “input” variables x � �x�1�, x�2�, . . . ,x�n��
and measure another set of “output” variables y �
� y�1�, y�2�, . . . , y�m��, we can actively manipulate the data
acquisition by selecting the most informative test inputs.
Yet how should one choose the test inputs to learn the
most about the input-output relation?

Within the classical Volterra-Wiener system identifica-
tion methods [1], the input space is sampled by drawing in-
puts from a probability distribution p�x�; a common choice
is Gaussian “white noise.” However, not all aspects of the
system’s input-output relation may be equally important.
In neurobiology, for instance, one is especially interested
in inputs x about which a given sensory system conveys
the most information. In the spirit of importance sam-
pling [2], one might therefore focus the data acquisition
on those x that contribute most to the information transfer.
For a given input distribution, the information provided
by a single input can be quantified as I�x� � Hy 2 Hy�x�
where Hy is the entropy of the output distribution p� y�
and Hy�x� is the entropy of the conditional probability dis-
tribution p� y j x� which characterizes the input-output re-
lation [3,4]. Hence, the appropriate focusing is achieved
by an input distribution popt�x� that maximizes the mutual
information I � �I�x�� where the angular brackets denote
averaging over popt�x�.

Without any information about the system and its in-
put-output relation, the optimal input distribution popt�x�
is unknown. Any experimental test of the system must
therefore start with drawing the test inputs from some pre-
defined model distribution pf�x� that depends on a set of
parameters f � �f�1�, . . . , f�L��. Once data about the sys-
tem has been acquired, however, one need not adhere to
this initial choice of an input distribution. Instead, one
should adapt the parameters or even the structure of pf�x�
to better focus on the important inputs. In this Letter, we
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show how to systematically perform this adaptation. By it-
erating the adaptation procedure, the acquired data become
ever more useful and the input distribution approaches an
optimum.

Adapting the input distribution.—For mathematical
simplicity, we assume that both input and output take
discrete values. Say that we have already tested the system
with N different inputs xi each of which was presented Mi

times while measuring the outputs yij with i � 1, . . . , N
and j � 1, . . . , Mi. We define the set of all different
output values measured so far by � yk :k � 1, . . . , K�. Our
present knowledge about the system is summarized by
the conditional probability that an output yk was obtained
from the input xi,

q� yk j xi� �
1

Mi

MiX
j�1

dyij ,yk . (1)

The estimated probabilities q� yk j xi� allow us to re-
evaluate the relative importance of the inputs xi in terms
of their potential contribution to the mutual information.
To measure this contribution, we assign a probability or
“weight” q�xi� to every input. Initially we assume that
all inputs xi contribute equally and set q1�xi� � 1�N . To
find a combination of weights that maximizes the informa-
tion transfer, we use the Blahut-Arimoto algorithm [5] and
readjust the weights,

qn11�xi� �
1
Z

qn�xi� exp

√
KX

k�1

q� yk j xi� log
q� yk j xi�
qn� yk�

!
.

(2)

Here qn� yk� �
PN

i�1 q� yk j xi�qn�xi� and Z is a normal-
ization constant so that

PN
i�1 qn11�xi� � 1. According

to Eq. (2), the weight of an input xi is decreased if its
conditional output distribution q� yk jxi� is similar to the
total output distribution qn� yk�. In contrast, the weight
of an input xi is increased if the respective distributions
differ. When Eq. (2) is iterated, the weights converge
and reach a global maximum of the mutual information
[5]. In practice, we terminate the process once j1 2

qn11�xi��qn�xi�j , e for all i and some chosen precision
e and set qopt�xi� � qn11�xi�.
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The weights or probabilities qopt�xi� describe the rela-
tive frequencies with which the respective inputs xi should
be drawn. Consequently, we need to adapt the parame-
ters f so as to find a matching distribution pf�x�. Here
we determine the new parameters f by maximizing the
log-likelihood function [6],

logL�x1, . . . , xN jf� �
NX

i�1

qopt�xi� logpf�xi� , (3)

where the contribution of the inputs xi is weighted ac-
cording to qopt�xi�. For some models, e.g., Gaussians, the
maximum can be found analytically. In general, however,
one has to evaluate the maximum numerically.

The input distribution given by the new parameter values
can be used to draw new test inputs, present them to the
system, and measure the respective outputs. After a certain
amount of data has been acquired, the parameters f can
be adapted again. The resulting iterative algorithm moves
the input distribution towards an optimal ensemble.

Model quality and convergence.— Every maximum of
the mutual information with respect to p�x� is a global
maximum [4]. Hence, if the input distribution does not
rule out any inputs, i.e., pf�x� . 0 for all x and f, the es-
timates of the input-output relation, Eq. (1), converge, and
therefore qopt�xi� ! popt�xi�. Accordingly, the mutual in-
formation ID � �Hq

y 2 Hy�x��q achieves the information
capacity of the system; here the index q denotes that the
respective quantities and averages are calculated with re-
spect to qopt�xi�.

The model distribution pf�x� converges towards an
optimal fit of popt�x�. To control how well pf�x� captures
the structure of popt�x�, one can check the mutual infor-

mation achieved by the model, IM � �Hf
y 2 Hy�x��f,

which is calculated with respect to rf�xi� � pf�xi��
�
PN

j�1 pf�xj�	. The fraction g of the mutual information
reached by the model is then defined as

g �
IM

ID
(4)

and provides a measure for the quality of the model.
Hence, if g falls significantly below one, the distribution
pf�x� no longer captures the structure of the optimal
ensemble popt�x�; in such a case, one might increase the
complexity of the model.

In general, the algorithm will not be able to adapt the
input ensemble if the presented inputs always result in
the same output value. Similarly, there is no possibility
to weight the inputs xi differently if every input elicits a
new, different output. However, the latter problem can be
solved by discretizing the output side into a smaller number
of possible outputs. The input space, on the other hand,
can be discretized as fine as needed without impeding the
convergence of pf�x�.

Example.—To illustrate the method, we study a nu-
merical simulation of a Hodgkin-Huxley– type model
neuron [7]. The model neuron transforms an input current
228104-2
I into a voltage output V . For constant current values
I , 0 mA�cm2, the voltage approaches a stable equi-
librium. For current values I . 0 mA�cm2, the model
undergoes a saddle-node bifurcation and generates pe-
riodically occurring action potentials, also called spikes
[8]. Stochastic aspects of neural activity are incorporated
by adding Gaussian “white” noise with a fixed standard
deviation sh and a cutoff frequency fh to the input.

We start with a simple one-dimensional parametrization
of input and output. The inputs are 100-ms-long, dis-
cretized current steps (DI � 1 mA�cm2), restricted to a
physiologically realistic range of I [ �212, 28	 mA�cm2.
The outputs are given by the number of spikes, C, during
the corresponding time window. The resulting probabilis-
tic relation of spike count versus current is displayed in
Fig. 1(a).

For this one-dimensional input-output system, we can
compute an exact solution of the information maximization
problem. The optimal input distribution popt�I� is depicted
by the vertical bars in Fig. 1(b); the shape of popt�I� corre-
sponds to the slope of the input-output relation [9]. Inputs
far below the spiking threshold result almost certainly in
no spikes. As reliable inputs allow one to convey more
information than unreliable inputs, the optimal input dis-
tribution prefers inputs far below threshold to inputs closer
to threshold.
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FIG. 1. Approaching the optimal input ensemble of a neuron
with static, one-dimensional input and output. (a) Plot of the
conditional probability distribution p�C j I� with spike count C
and input current I . The uncertainties at I 
 22 mA�cm2 are
due to a decline in spike size that makes it impossible to detect
the spikes in the noisy voltage output. For I 
 28 mA�cm2 , the
model neuron ceases to generate spikes. (b) Approaching the
optimal input distribution (bars). Shown are the initial distribu-
tion (1), the distributions of the iterations (2) and (4), as well
as the final distribution (`). (Simulation parameters: n � 1,
m � 1, L � 2, A � 10, B � 5, e � 0.1, sh � 4 mA�cm2,
fh � 1000 Hz.)
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To study the performance of the iterative algorithm,
we model the optimal input distribution by a truncated
Gaussian. As initial parameter values, we choose a mean
f�1� � 210 mA�cm2 and a standard deviation f�2� �
10 mA�cm2. In each iteration, we draw A current
values from the Gaussian, test them B times on the
system, and adapt the parameters. For our Gaussian
model, the maximum likelihood estimate of the new
parameters is given by f�1� �

PN
i�1 Iiqopt�Ii� and

f�2� � �
PN

i�1�Ii 2 f�1��2qopt�Ii�	1�2.
The Gaussian model distributions are displayed in

Fig. 1(b) for the first few iterations. Most of the current
values drawn from the initial distribution fall below
the spiking threshold of the neuron. Consequently, the
algorithm shifts the Gaussian distribution into the spiking
regime of the neuron. After about 10 iterations, the
mutual information rate saturates at 
40 bits�sec and the
final Gaussian model approximately covers the range of
inputs relevant to information transmission. Note that due
to the maximum-likelihood estimation, Eq. (3), the final
Gaussian distribution has the same mean and variance as
the optimal distribution.

Multidimensional example.—The computational power
of the algorithm becomes clearly visible for high-
dimensional input spaces. As an example, consider
the above model neuron when the input consists of
time-varying, statistically stationary currents, discretized
in time steps of Dt1. Following [10], we slide overlapping
windows of length T � nDt1 across the input current
trace and use the values within each window as input
vector Ii � �I�1�

i
, . . . , I�n�

i
�. For each of these inputs Ii, the

output Cij is given by the spike times, discretized in time
steps of Dt2 � T�m, during the corresponding window.
Hence, each input consists of n real-valued numbers
bounded within the interval I [ �212, 28	 mA�cm2, and
each output consists of m binary values that are either zero
(no spike) or one (spike). Note that we do not explicitly
discretize the current values; we instead assume that every
input Ii is unique. For simplicity, we use a Gaussian
input distribution. As the input is real and stationary, it
suffices to parametrize the Gaussian with average and
power spectrum.

To test the system, we choose an initial distribution
with an average m � f�1� � 0 mA�cm2 and a flat power
spectrum with standard deviation s � �

PL
i�2 f�i�	1�2 �

10 mA�cm2. For this prior, only 50% of the input val-
ues lie above threshold and the inputs will rarely lead to
high firing rates; cf. Fig. 1. Consequently, we do not prop-
erly explore the full range of the input-output relation; if,
for example, we test the system for 30 min with input cur-
rents drawn from this initial distribution, the information
rate ID does not exceed 
300 bits�sec.

When using the iterative algorithm to adapt the parame-
ters of the input ensemble, on the other hand, the infor-
mation rate ID saturates around 
670 bits�sec after about
20 min. Figure 2(a) shows how the power spectrum is
228104-3
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FIG. 2. Approaching the optimal input ensemble of a
neuron with time-varying input and output. (a) Evolu-
tion of average and power spectrum. (b) Evolution of
information rate and (c) model quality for three different
initial conditions: m � 0 mA�cm2, s � 10 mA�cm2 (solid
lines); m � 26 mA�cm2, s � 10 mA�cm2 (dashed lines);
m � 20 mA�cm2 , s � 1 mA�cm2 (dotted lines). (Simulation
parameters: n � 64, m � 16, L � 33, A � 1000, B � 20,
e � 0.1, sh � 4 mA�cm2 , fh � 2000 Hz, Dt1 � 0.25 ms,
Dt2 � 1 ms, T � 16 ms; windows slided by Dt2; accordingly,
ADt2B 3 100 iterations 
 34 min.)

shaped during the iterations. Only input frequencies be-
low 500 Hz are well suited for the information transfer,
the cutoff is roughly determined by the maximum firing
rate of the model neuron. The overall increase in power
leads to input currents that override the additive noise h

of the model neuron.
Initial conditions, convergence, and degeneracies.—

When the initial distribution is very narrow [flat power
spectrum up to fc � 1000 Hz, with s � 1 mA�cm2,
f�1� � 20 mA�cm2, Fig. 2(b), dotted line], most of the
input currents drive the neuron maximally and thereby
very reliably. The strong initial bias leaves the algo-
rithm with little maneuvering space for the parameter
reestimation so that it takes longer to approximate an
optimal input distribution. In the worst case, every input
leads to the same output value. With the initial choice
f�1� � 26 mA�cm2 and s � 10 mA�cm2, the input
does not elicit any spikes during the first iterations;
cf. Fig. 2(b), dashed line. However, once a spike has ap-
peared, the statistics of the model distribution immediately
228104-3
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moves into the direction of the statistics of the inputs Ii

that caused a spike. When the algorithm has tracked the
relevant input range, a rapid increase of the information
rate follows.

In the examples studied, the mutual information reaches
approximately the same value independent of the initial
conditions; cf. Fig. 2(b). Although there is always a pref-
erence for frequencies below 500 Hz, however, the pa-
rameters of the optimal input ensemble do not converge
to the same set of values. Consequently, there is no unique
combination of parameters that maximizes the mutual in-
formation, an observation that generalizes beyond the spe-
cific examples chosen. This indeterminacy is caused by
“degenerate” subsets in input space, i.e., sets of inputs
that lead to the same output value. The total probabil-
ity assigned to such a subset can be distributed in an ar-
bitrary way on the subset, and any statistical parameters
f that depend on these subsets can assume different val-
ues without significant consequences for the information
transfer. Accordingly, all final input distributions capture
about the same amount (80%) of the mutual information
ID; cf. Fig. 2(c).

Neurophysiological interpretation.—Recent studies in-
dicate that sensory neurons convey large amounts of in-
formation if the properties of the stimulus ensembles used
match those of natural stimuli [11]. Here we have shown
how to extract a stimulus ensemble that conveys the maxi-
mum possible information without any prior knowledge.
The proposed method could therefore serve to find the en-
semble of stimuli that a given neuron naturally “expects.”
Note that in contrast to previous on-line algorithms such as
Alopex or Simplex [12], we are not looking for a single op-
timal stimulus but rather for a complete ensemble of stim-
uli. The examples demonstrate also that such an optimal
stimulus ensemble depends on the choice of a particular
neural code.

Conclusion.—Conventionally, input-output systems are
investigated by using either a predefined set of inputs or
inputs drawn at random from a predefined probability dis-
tribution. However, both approaches risk missing im-
portant regions in input space. If interest concerns the
system’s function in terms of information transmission,
then the data acquisition can be significantly improved by
using the iterative algorithm proposed in this Letter. The
optimal input ensemble itself might be interpreted as rep-
resenting that region in input space that a particular system
seeks to encode.
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